Algebraic Topology – Homework 2

Due date: April 17th in class

Exercise 4. (15 Points)

In this exercise you will need the following

Proposition 1. Let X_{α} be topological spaces endowed with a Δ -complex structure, and consider $\vee_{\alpha} X_{\alpha}$, which can also be endowed with a Δ -complex structure. Assume that each of the point $x_{\alpha} \in X_{\alpha}$, identified in the wedge sum $\vee_{\alpha} X_{\alpha}$, has a contractible neighborhood in X_{α} . Then $H_i^{\Delta}(\vee_{\alpha} X_{\alpha}) \cong \bigoplus_{\alpha} H_i^{\Delta}(X_{\alpha})$ for every i > 0.

Given finitely generated abelian groups G_1 and G_2 , with G_2 free, describe a finite 2-dimensional Δ -complex X which is connected and such that $H_1^{\Delta}(X) \cong G_1$ and $H_2^{\Delta}(X) \cong G_2$. (Hint: use the fundamental theorem of finitely generated abelian groups).

Exercise 5. (10 Points)

Let X be a nonempty topological space with $n < \infty$ path-connected components. Prove that $\widetilde{H}_0(X) \simeq \mathbb{Z}^{n-1}$ if n > 1 and $\widetilde{H}_0(X) = 0$ if n = 1 explicitly, by exhibiting a basis of it.

Exercise 6. (10 Points)

Let X, Y be topological spaces, and $f: X \longrightarrow Y$ a constant map. Prove that $f_*: H_i(X) \longrightarrow H_i(Y)$ is the zero homomorphism for every i > 0.

Let $\{A_n\}_{n\in\mathbb{Z}}$ be a sequence of abelian groups, and $\{\alpha_n\colon A_{n+1}\longrightarrow A_n\}_{n\in\mathbb{Z}}$ be homomorphisms

$$\cdots \longrightarrow A_{n+1} \xrightarrow{\alpha_{n+1}} A_n \xrightarrow{\alpha_n} A_{n-1} \longrightarrow \cdots$$

so that Ker $\alpha_n = \text{Im } \alpha_{n+1}$ for every n. Thus the pair $(A_*, \alpha_*) = \{(A_n, \alpha_n)\}_{n \in \mathbb{Z}}$ is a chain complex with *trivial homology*, and is called an **exact sequence**. In particular

$$0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$$

is called a **short exact sequence**. This is equivalent to saying that α is *injective*, β is *surjective* and Im $\alpha = \text{Ker } \beta$, thus implying that $B / \text{Im } \alpha \simeq C$.

Exercise 7. (15 Points)

Suppose that

$$\cdots \longrightarrow A_{n+1} \xrightarrow{\alpha_{n+1}} A_n \xrightarrow{\alpha_n} A_{n-1} \longrightarrow \cdots$$

is an exact sequence. Prove that for every n there is a short exact sequence of the form

$$0 \longrightarrow \operatorname{Coker} \alpha_{n+2} \xrightarrow{\widetilde{\alpha}_{n+1}} A_n \xrightarrow{\alpha'_n} \operatorname{Ker} \alpha_{n-1} \longrightarrow 0$$

where $\operatorname{Coker} \alpha_i$ denotes the cokernel of α_i , i.e. it is equal to $A_{i-1}/\operatorname{Im} \alpha_i$. Note that you need to define the maps $\widetilde{\alpha}_{n+1}$ and α'_n , and prove that they are well-defined.