Algebraic Topology - Homework 11

Due date: January 14th in class

Exercise 1.

Let G be an abelian group. Prove carefully the following statements (made in class in the lecture of the 18th of December):

- (a) The homology groups of a point p with coefficients in G are : $H_0(p; G) = G$ and $H_i(p; G) = 0$ for all i > 0.
- (b) The reduced homology groups of an n-dimensional sphere S^n with coefficients in G are $\widetilde{H}_k(S^n; G) = G$ for k = n and 0 otherwise, for all $n \ge 0$.
- (c) Let $f: X \longrightarrow Y$ be a continuous map, and $f_{\#}: C_n(X) \longrightarrow C_n(Y)$ the induced maps on the groups of singular chains. Then $f_{\#} \otimes Id_G: C_n(X; G) \longrightarrow C_n(Y; G)$ is a chain map, and it induces a well-defined homomorphism $(f \otimes Id_G)_*: H_n(X; G) \longrightarrow H_n(Y; G)$.
- (d) Let G_1 and G_2 be abelian groups, and $\Phi: G_1 \longrightarrow G_2$ be a group homomorphism. Then the map $Id_{C_n(X)} \otimes \Phi: C_n(X; G_1) \longrightarrow C_n(X; G_2)$ is a chain map, so it induces a homomorphism $(Id_{C_n(X)} \otimes \Phi)_*: H_n(X; G_1) \longrightarrow H_n(X; G_2)$. Moreover the following diagram commutes:

$$H_n(X; G_1) \xrightarrow{(f \otimes Id_{G_1})_*} H_n(Y; G_1)$$

$$\downarrow (Id_{C_n(X)} \otimes \Phi)_* \downarrow \qquad \qquad \downarrow (Id_{C_n(Y)} \otimes \Phi)_*$$

$$H_n(X; G_2) \xrightarrow{(f \otimes Id_{G_2})_*} H_n(Y; G_2)$$

Exercise 2.

Let X be a topological space endowed with the structure of a CW complex, and let G be an abelian group. Prove that the cellular homology groups with coefficients in G, denoted by $H_i^{CW}(X; G)$, are isomorphic to the homology groups with G coefficients $H_i(X; G)$ for every $i \geq 0$. (Hint: follow the proof of the analogous fact with $G = \mathbb{Z}$, justifying each step.)

Exercise 3.

Compute the homology groups with \mathbb{Z}_2 coefficients of all compact surfaces. (Hint: use cellular homology and the previous exercise, or the *Universal Coefficient Theorem* for homology. It would be instructive to compute at least some of these groups in both ways.)

Exercise 4.

Consider the real projective space $\mathbb{R}P^2$ endowed with the usual CW structure, with one cell in dimension 0, 1 and 2, so that the one skeleton X^1 is homeomorphic to $\mathbb{R}P^1$ and the (only) two cell e^2 is attached to X^1 via a map of degree 2. Let $p \colon \mathbb{R}P^2 \longrightarrow \mathbb{R}P^2/X^1 \simeq S^2$ be the projection map obtained by collapsing X^1 in $\mathbb{R}P^2$. Compute the following maps:

$$(1) (p_{\#} \otimes Id_{\mathbb{Z}_2})_* \colon H_2(\mathbb{R}\mathrm{P}^2; \mathbb{Z}_2) \longrightarrow H_2(S^2; \mathbb{Z}_2);$$

(2)
$$p_*: H_i(\mathbb{R}P^2; \mathbb{Z}) \longrightarrow H_i(S^2; \mathbb{Z})$$
 for all i .

Deduce that the map in (1) **cannot** be recovered from the maps in (2) and the *Universal Coefficient Theorem* for homology.