Algebraic Topology - Homework 0

No due date

Exercise 1.

- (a) Prove that, if (X, \mathcal{T}) is a Hausdorff space and $C \subseteq X$ is a compact subset, then C is closed.
- (b) Using (a), prove that if $\pi: (P, \mathcal{T}_1) \longrightarrow (S, \mathcal{T}_2)$ is a continuous surjective map, with (P, \mathcal{T}_1) compact and (S, \mathcal{T}_2) Hausdorff, then \mathcal{T}_2 coincides with the quotient topology.

The next exercise is a "Prove or disprove exercise": it means that, if you "feel" that the assertion is true, you should prove it carefully; if you "feel" it is false, you should find a contradiction. This type of exercises are harder but very instructive, as they improve intuition.

Here every subspace of $(\mathbb{R}^n, \mathcal{E})$ is endowed with the subset topology, and \mathcal{E} denotes the Euclidean topology on \mathbb{R}^n ,

Let $S^n \subset \mathbb{R}^{n+1}$ be the *n*-dimensional unit sphere

$$S^{n} := \left\{ (x_{1}, x_{2}, \dots, x_{n+1}) \in \mathbb{R}^{n} \mid x_{1}^{2} + x_{2}^{2} + \dots + x_{n+1}^{2} = 1 \right\},\,$$

and let \sim be the equivalence relation on S^1 defined by :

$$(x_1, x_2, \dots, x_{n+1}) \sim (y_1, y_2, \dots, y_{n+1}) \iff (x_1, x_2, \dots, x_{n+1}) = \pm (y_1, y_2, \dots, y_{n+1}).$$

Then $(\mathbb{R}P^n, \mathcal{T})$ is the topological space given by the equivalence classes of \sim , endowed with the quotient topology (with respect to the map that sends $(x_1, x_2, \ldots, x_{n+1}) \in S^n$ to $[(x_1, x_2, \ldots, x_{n+1})] = \{(x_1, x_2, \ldots, x_{n+1}), (-x_1, -x_2, \ldots, -x_{n+1})\}$), and is called the *n*-dimensional (real) projective space. In other words, " $\mathbb{R}P^n$ is obtained from S^n by identifying antipodal points."

Exercise 2.

Prove* or disprove the existence of the following homeomorphisms:

- (a) $\mathbb{R}P^n \approx S^n$ for all integer $n \geq 0$;
- (b) $S^1 \approx \infty$ (here " ∞ " is the subspace of \mathbb{R}^2 given by two circles touching in one point, as in the infinity symbol);
- (c) $\mathbb{R}^1 \approx \mathbb{R}^n$, for all integers n > 1;
- (d) $\mathbb{R}^2 \approx \mathbb{R}^n$, for all integers n > 2;
- (e) $S^2 \setminus \{\mathbf{n}, \mathbf{s}\} \approx \mathcal{C}$, where S^2 is the unit sphere $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$, $\mathbf{n} = (0, 0, 1)$, $\mathbf{s} = (0, 0, -1)$ and \mathcal{C} is the cylinder given by $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}$.
- (e) $\mathbb{R}^{n+1} \setminus \{0\} \approx S^n \times \mathbb{R}$, where S^n is the *n*-dimensional unit sphere.
- * Here Prove means that you should find a homeomorphism as explicitly as possible.

Exercise 3.

Prove that every injective continuous map $S^1 \longrightarrow S^1$ is also surjective.

Exercise 4.

For an integer $n \geq 1$, is every map $S^n \longrightarrow S^1$ null-homotopic?